Vector Database Showdown

A Comparative Guide to Leading Vector Databases

Database License & Hosting Scale & Performance Filtering & Search Ecosystem & Tooling Strengths Caveats
Qdrant Apache-2, Self-host & Cloud ⚡️ <3ms p50 (1M vec)
💾 Quantization cuts RAM ~30x
Payload-aware filters
Multi-vector per doc
HTTP & gRPC APIs
LangChain/LlamaIndex
✅ High RPS
✅ Multi-vector out-of-box
⚠️ Newer managed cloud
⚠️ Fewer enterprise RBAC
Milvus Apache-2 & Zilliz Cloud 📈 Billions of vectors
🖥️ CPU/GPU HNSW, IVF-PQ
Hybrid sparse + dense
Boolean filters
Dozens of RAG tutorials ✅ Mature scaling
✅ Laptop → Cluster
⚠️ On-prem ops complexity
⚠️ Cloud vendor lock-in
Weaviate Apache-2, Self-host & Serverless Go core; auto-sharding
Scales to billions
BM25 + vector "hybrid"
Metadata & geo filters
GraphQL & REST APIs
Agents SDK, RAG e-book
✅ Turn-key vectorization
✅ Multi-tenant RBAC, SOC 2
⚠️ Higher write latencies at scale
Faiss BSD-2 (Library, not DB) 🚀 Fastest raw ANN on GPU None; must build custom Python/C++ wrappers
Underpins many DBs
✅ Ultimate algorithm control
✅ No network hop
⚠️ No persistence/auth
⚠️ You build the server
Chroma Apache-2, Local & Cloud Single-node (~100M vec)
~20ms p50 (100k vec)
Metadata & full-text
Multimodal support
3-line Python API
Built into LangChain
✅ Easiest local prototyping
✅ "Works out-of-the-box"
⚠️ Single-node today
⚠️ Distributed in preview
Pinecone Proprietary; Managed Serverless 12B vectors GA
O(10 ms) low-latency reads
High-recall metadata filters Batteries-included docs
Dashboard & RAG primers
✅ Zero-ops, autoscaling
✅ Cross-region replication
⚠️ Usage-based cost
⚠️ Closed-source, no self-host
pgvector PostgreSQL License Tens of millions
Inherits ACID, PITR
SQL WHERE clauses
Joins with GIS/JSONB
Works via any Postgres driver ✅ Keep vectors with relational data
✅ Simplicity
⚠️ Table bloat under writes
⚠️ IVFFlat tuning required
LanceDB Apache-2, Local & Cloud Columnar "Lance" format
Sub-ms lookups
SQL-like filters
ANN & brute-force
Python/TypeScript SDKs
Graph-RAG template
✅ Multimodal Lakehouse vision
✅ Search → EDA → Training
⚠️ Younger community
⚠️ Fewer 3rd-party integrations
Vespa Apache-2 & Vespa Cloud Proven at Yahoo/Perplexity
<100ms at K QPS
Native BM25 + dense
Tensor ranking
YQL, REST & gRPC
LangChain/LlamaIndex
✅ Unified ranking (text, tensor)
✅ Real-time in-cluster inference
⚠️ Steep ops footprint (Java)
⚠️ Learning curve for config
Vald Apache-2 (Helm charts) NGT index; auto-index
Scales to billions on K8s
gRPC hooks for custom filters Go/Java/Python/Node SDKs
Grafana dashboards
✅ Kubernetes-first
✅ Auto-scaling, backups
⚠️ Smaller community
⚠️ Limited hybrid search
Elasticsearch Elastic License & Cloud Lucene 9.9 HNSW
Sub-10ms p50 (10M vec)
BM25 + vector hybrid
Rich bool/geo filters
Huge ecosystem; ESQL
Kibana, LangChain plugin
✅ "All-in-one" solution
✅ Mature RBAC & observability
⚠️ SSPL-like license
⚠️ Can be resource-heavy
Redis BSD-3 OSS & Enterprise In-memory KNN
62% higher QPS than peers
RediSearch KNN
Mix with JSON/full-text
Clients in all languages
LangChain, llama-cpp
✅ Lowest latency (μs–ms)
✅ Ideal for real-time RAG
⚠️ Memory-bound (unless Flash)
⚠️ Some features Enterprise-only

Feel free to benchmark with your own embeddings and workload to pick the best fit!